## Lång och kort planeringshorisont från ett industriellt perspektiv

Krister Forsman Charlotta Johnsson Planering

Produktionsplanering och schemaläggning

Reglering av Satsvis, Sekventiell Kontinuerlig produktion

Kan helheten bli större än summan av delarna?

#### PIC-opic:

Optimization, Performance, Integration, Control

Affärsplanering

Produktionsplanering och schemaläggning

Reglering av Satsvis, Sekventiell, Kontinuerlig produktion





#### Collaborating teams

Industrial Partner: Perstorp

Krister and Nils-Petter

+ Daniel Hansson, Anders Broberg

PIC-Linköping & PIC-Lund

#### **Buffer Mgmnt**and Inventories

- Ou Tang
- Tore Hägglund
- Daqin Wang
- Liu Weihua

#### Performance Metrics

- CharlottaJohnsson
- Joakim Wikner
- Sayeh Noroozi

#### **Economic Optimization**

- Helene Liedestam
- Anna Lindholm
- Nils-Hassan Quttineh
- Pontus Giselsson
- Mathias Henningsson
- Charlotta Johnsson
- Joakim Wikner

# Planning, optimization, inventory control: Challenges particular to the process industry

Krister Forsman

#### The Perstorp group – short facts

- Specialty chemicals company with focus on organic chemistry
  - 1500 employees; Turn-over 2012 = 10.5 GSEK
- Products: Mainly additives for other chemical industries, e.g. additives in paints and coatings, plastic-processing, food and feed, solvents.
- Main product groups: polyalcohols, esters, organic acids, polymers, aldehydes
- Nine production sites, in eight countries; Totally ~40 plants
- Typical plant characteristics:
  - Synthesis (reaction) followed by a large number of separation steps
  - Batch-wise reaction, continuous separation, e.g. distillations, evaporations, crystallization,
  - Many intermediate buffers
  - High value side streams (byproducts), gives many recycle loops





#### Characteristic of a process industry plant

- Some aspects of a typical chemical plant makes it very different from a discrete manufacturing plant. Examples:
- There is a turn-down ratio.
  - The plant cannot be run at a slower production rate than maybe 50-70%.
- Start-up time is significant
  - Not uncommon that it takes up to 24 h to go from shut down to full production ("cold start")
- Start-up costs are signficant
  - Varies significantly from plant to plant, but ~100 k€ is not uncommon
- Variable cost per ton depend on production rate

#### Variable costs depend on production rate

- Almost always: production cost in SEK/ton decreases as production rate is increased.
- Primary reason: there is a "base load" for utilities, which is distributed on more tons when you run faster.
- In some cases, the raw material yield is also better at higher rates.



#### What is an "unplanned" shutdown?

#### Two extreme cases:

- Regular maintenance shutdown: planned months or years ahead.
   Typically lasts for two weeks or more
- Immediate, out-of-the-blue, shutdown: with only minutes or seconds head warning. E.g. power outage, faulty trips, human error
- But most shutdowns are somewhere in between:
  - "The pump sounds strange and needs to be repaired within a week".
    - Check the list of pending maintenance work requiring shutdown, and try to plan the shutdown timing and duration, so as to optimize this.
  - Example: "Fixing the pump only takes 6 hours, but if we have a 12 hour shutdown and fix some other stuff as well, we can postpone the next planned shutdown and get better availability next month".



#### Hard to assign a value to availability

- An unplanned shutdown means lower produced volume than planned during a period.
- Suppose the planned volume was only 80% of available max capacity.
  - If we have a one day shut, we can catch up within five days.
  - Is there any cost associated to this? What is the loss?
- Always creates additional work for distribution planning / transports. Sometimes actual monetary costs.
- What is the effect on sales?
  - Very hard to model. There may be lost orders, but that is not always registered.
  - There may also be direct or indirect penalties associated to delays, but this is often subject to negotiation.
- Average stock levels can be decreased if production is more reliable.

#### Input to inventory planning discussion

Consider the production as a process which is not 100% reliable. A probability distribution specifies how likely we are to get what we planned. How do we calculate the optimum inventory levels given this pdf and specifications on delivery accuracy?





#### How did we address these challenges?

## Economic Optimization Buffer and Inventory Management Performance Metrics

Charlotta Johnsson

#### Perstorp

Perstorp – 9 Produktionssiter runt om i världen – vardera site har flertalet Areor/Fabriker



#### **Economic Optimization**

- Störningar i stöd-material (utilities) har en ekonomisk påverkan på företaget. Hur kan denna bli så liten som möjligt?
  - Pro-active disturbance handling
    - Titta på hur historisk data för störningar har sett ut. Vilken störning har genererat mest problem? Beslutsunderlag
  - Re-active disturbance handling
    - Vad kan göras i de korta planeringshorisonterna (control)
    - Vad kan göras i de långa planeringshorisonterna (scheduling)
    - => en optimeringsmodell delad i två delar

## Economic optimization



Formulation of optimization-problem for the schedules according to "wishlist" from industry.

MPC as optimization technique



#### Buffer management



The project develops algorithms to estimate key parameters in the stochastics representations.

## Buffer management – Stochastic dynamic programming

$$W_{t}(x,s) = \begin{cases} \min_{q \in [\underline{q},\overline{q}]} \{ (1-\beta)J_{t}(x,q) + \beta I_{t}(x,q) \} + \beta K, & s = 0 \\ H(x-d) + \rho(s)W_{t+1}(x-d,0) + (1-\rho(s))W_{t+1}(x-d,s+1), & s > 0 \end{cases}$$

$$\begin{split} J_{t}(x,q) &= \mathbf{E}_{P} \Big[ c \Big( P(q) \Big) + H \Big( x + P(q) - d \Big) + W_{t+1} \Big( x + P(q) - d, 0 \Big) \Big] \cdot I \Big\{ P(q) \leq A + d - x \Big\} \\ &+ \mathbf{E}_{P} \Big[ c \Big( A + d - x \Big) + H \Big( A \Big) + \rho \Big( 0 \Big) W_{t+1} \Big( A, 0 \Big) + \Big( 1 - \rho \Big( 0 \Big) \Big) W_{t+1} \Big( A, 1 \Big) + K \Big] \cdot I \Big\{ P(q) > A + d - x \Big\} \\ I_{t}(x,q) &= \mathbf{E}_{\gamma} \mathbf{E}_{P} \Big[ c \Big( \gamma P(q) \Big) + H \Big( x + \gamma P(q) - d \Big) + W_{t+1} \Big( x + \gamma P(q) - d, 0 \Big) \Big] \cdot I \Big\{ \gamma P(q) \leq A + d - x \Big\} \\ &+ \mathbf{E}_{\gamma} \mathbf{E}_{P} \Big[ c \Big( A + d - x \Big) + H \Big( A \Big) + \rho \Big( 0 \Big) W_{t+1} \Big( A, 0 \Big) + \Big( 1 - \rho \Big( 0 \Big) \Big) W_{t+1} \Big( A, 1 \Big) + K \Big] \cdot I \Big\{ \gamma P(q) > A + d - x \Big\} \end{split}$$

### Buffer management - main results

- Develop exact and approximated models
  - production planning
- Analyse the effect of frozen periods
  - Cope frozen periods with the inventory capacity and disruption occurance.
- Analyse the effect of delayed transportations
  - Benefit of obtaining delay information early

## Buffer managementSimulation platform



#### Performance Metrics

- Performance Metrics = m\u00e4tetal l\u00e4mpligt f\u00f6r utv\u00e4rdering och m\u00e4l.
- Vilka Performance Metrics kan användas i process industrin?
  - ISO 22400 och Studentrapporter
  - Exempel: Utilization ratio används oftare än Availability
- När är olika Performance Metrics lämpliga att använda?
  - Olika typer av kombination av produkt, produktion, drivare
  - En kub har plockats fram
  - ⇒ Ny ansökan där lämpliga nyckeltal skall sättas in i kuben
- Hur kan olika Performance Metrics visas f\u00f6r anv\u00e4ndare?
  - Physical equation
  - Physical relation
  - Logical equation
  - Logical relation
- Hur kan olika Performance Metrics implementeras i ett IT system?
  - XML är ett vanligt format för utbyte av information mellan
     IT system (jämför tex ISA95 scheman B2MML)
  - => Ny ansökan om kpiML





Equipment hierarchy

4 way to roll-up or drill-down



#### PIC-opic:

Optimization, Performance, Integration, Control



Affärsplannering

Produktionsplanering och schemaläggning

Reglering av Satsvis, Sekventiell Kontinuerlig produktion

Vi tror att vi skapat lite mer "helhet" bland delarna